China Standard 45 Module Large /Heavy Cast Girth Ring Gear for Rotrar Kiln gear patrol

Product Description

CITICIC is the casting & forging center in central-south China, possessing 50t electric arc furnace, 60t LF ladle refining furnace, and 60t VD/VOD refining furnace, etc. We can pour 350t liquid steel 1 time and yields more than 200,000t of high quality liquid steel and can produce the high quality steel of more than 260 steel grades such as carbon steel, structural alloy steel and the structural steel, refractory steel and stainless steel of special requirement. The maximum weight of casting, gray casting, graphite cast iron and non-ferrous casting is 200t, 30t, 20t and 205t separately.

 

Features:

Module Range: 10 Module to 70 Module.

Diameter: Min 800mm to16000 mm.

Weight: Max 120 MT single piece.

Three different designs: Fabricated steel – forged ring – rolled plate

Standards / Certificates: • CHINAMFG EN ISO • AWS • ASTM • ASME • DIN

 

 

Advantages:

– Products with Customers’ Designs

– Strong Machining & Heat Treatment Abilities

– Strict Quality Control

– Prompt Delivery

– Experience in Cooperation with Fortune 500 Companies

 

Process:

Forging / Casting

Normalizing & Tempering-Proof Machining

Quenching & Tempering

Finish Machining (Teeth Grinding)

 

 

We can offer you in various process conditions solutions for Many End Markets and Applications

–Mining

–Metallurgy

–Power Generation

–Sugar

–Cement Plant

–Port Machinery

–Oil and natural

–Papermaking

–OEM gear case

–General Industrial

 

 

Specifications Of Gear:

No.

Item

Description

1

Diameter

≤15m

2

Module

≤45

3

Material

Cast Alloy Steel, Cast Carbon Steel, Forged Alloy Steel, Forged Carbon Steel

4

Structure From

Integrated, Half to Half, Four Pieces and More Pieces

     

5

Heat Treatment

Quenching & Tempering, Normalizing & Tempering, Carburizing & Quenching & Tempering

     

6

Tooth Form

Annular Gear, Outer Gear Ring

7

Standard

ISO, EN, DIN, AISI, ASTM, JIS, IS, GB

 

Inspection And Test Outline Of Girth Gear:

No.

Item

Inspection Area

Acceptance Criteria

Inspection Stage

Certificates

1

Chemical 
Composition

Sample

Material Requirement

When Smelting
After Heat Treatment

Chemical Composition 
Report

2

Mechanical
Properties

Sample (Test Bar on the Gear Body)

Technical Requirement

After Heat Treatment

Mechanical Properties 
Report

3

Heat 
Treatment

Whole Body

Manufacturing Standard

During Heat Treatment

Heat Treatment Report
Curves of Heat 
Treatment

4

Hardness 
Test

Tooth Surface, 3 Points Per 90°

Technical Requirement

After Heat Treatment

Hardness Teat Report

After Semi Finish 
Machining

         

5

Dimension 
Inspection

Whole Body

Drawing

After Semi Finish

Machining

Dimension Inspection 
Report

Finish Machining

         

6

Magnetic Power Test (MT)

Tooth Surface

Agreed Standard

After Finish Gear 
Hobbing

MT Report

7

UT

Spokes Parts

Agreed Standard

After Rough Machining

UT Report

After Welded

         

After Semi Finish 
Machining

         

8

PT

Defect Area

No Defect Indicated

After Digging
After Welded

PT Record

9

Mark Inspection

Whole Body

Manufacturing Standard

Final Inspection

Pictures

10

Appearance Inspection

Whole Body

CIC’s Requirement

Before Packing (Final Inspection)

 

11

Anti-rust 
Inspection

Whole Body

Agreed Anti-rust Agent

Before Packing

Pictures

12

Packing 
Inspection

Whole Body

Agreed Packing Form

During Packing

Pictures

 

Facilities For Manufacturing Gear Ring:

No

Item

Description

1

Smelting & Casting Capability

40t, 50t, 80t Series AC Electric Arc Furnace
2×150t, 60t LF Ladle Refining Furnace
150t, 60t Series VD / VOD Furnace
20×18m Large Pouring Facility

We can pour 900t refining liquid steel 1 time, and achieve vacuum poured 600t steel ingots.

We can produce the high quality steel of more than 260 steel grades as carbon steel, structural alloy steel and the structural steel, refractory steel and stainless steel of special requirement. 

The maximum weight of casting steel, gray casting, graphite cast iron and non-ferrous casting is 600t, 200t, 150t and 20t separately.

2

Forging Capability

The only 1 in the word, the most technologically advanced and the largest 
specification18500t Oil Press, equipped with 750t.m forging operation machine
8400t Water Press
3150t Water Press
1600t Water Press
Φ5m High Precision Ring Mill (Germany)
Φ12m High Precision Ring Mil
We can roll rings of different sections of carbon steel, alloy steel, high temperature alloy steel and non-ferrous alloys such as copper alloy, aluminum alloy and titanium alloy. 
Max. Diameter of rolled ring will be 12m.

3

Heat Treatment Capability

9×9×15m, 8×8×12m, 6×6×15m, 15×16×6.5m, 16×20×6m, 7×7×17m Series Heat CHINAMFG and Heat Treatment Furnaces

φ2.0×30m, φ3.0×5.0m Series Heat Treatment Furnaces
φ5.0×2.5m, φ3.2×1.5m, φ3.0×5.0m, φ2.0×5m Series Carburizing Furnaces &
Nitriding Furnaces & Quenching Bathes
φ2.0×30m Well Type CNC Electrical Furnaces
Φ3.0×5.0M Horizontal Gas Temperature-differential Furnace
Double-frequency and Double-position Quenching Lathe of Pinion Shaft

4

Machining Capability

1. ≥5m CNC Heavy Duty Vertical Lathes

12m CNC Double-column Vertical Lathe
10m CNC Double-column Vertical Lathe
10m CNC Single-column Vertical Lathe
6.3m Heavy Duty Vertical Lathe
5m CNC Heavy Duty Vertical Lathe

 

2. ≥5m Vertical Gear Hobbing Machines
15m CNC Vertical Gear Hobbing Machine
10m Gear Hobbing Machine
8m Gear Hobbing Machine
5m Gear Hobbing Machine
3m Gear Hobbing Machining

 

3. Imported High-precision Gear Grinding Machines
0.8m~3.5m CNC Molding Gear Grinding Machines

 

4. Large Boring & Milling Machines
220 CNC Floor-mounted Boring & Milling Machine
200 CNC Floor-mounted Boring & Milling Machine
160 CNC Floor-mounted Boring & Milling Machine

 

Application: Industry
Hardness: According to Customers′ Requirements
Manufacturing Method: Cast Gear, Forged Gear
Toothed Portion Shape: Spur Gear
Material: Cast Steel, Forged Steel
Type: Circular Gear
Customization:
Available

|

Customized Request

ring gear

How do you choose the right size ring gear for your application?

Choosing the right size ring gear for a specific application involves considering several factors related to the gear system, load requirements, space constraints, and performance objectives. Here’s a detailed explanation of the process involved in selecting the appropriate size ring gear:

  1. Determine the Gear System Parameters: Understand the specific requirements of the gear system in which the ring gear will be used. This includes identifying the input power, desired output speed, torque requirements, and operating conditions such as temperature, vibration, and lubrication.
  2. Calculate Gear Ratios: Determine the required gear ratios for the gear system. Gear ratios define the relationship between the rotational speeds and torques of the driving and driven gears. By knowing the desired gear ratios, you can calculate the appropriate size of the ring gear relative to the other gears in the system.
  3. Evaluate Load Capacity: Assess the load capacity needed for the application. Consider the maximum torque and radial loads that the ring gear will experience during operation. It’s crucial to select a ring gear that can handle the anticipated loads without excessive wear, deformation, or failure.
  4. Consider Space Limitations: Determine the available space for the ring gear within the application. Consider the overall dimensions, such as the outer diameter, inner diameter, and thickness of the ring gear. Ensure that the selected size fits within the designated space without interfering with other components or compromising the overall functionality of the system.
  5. Account for Manufacturing Considerations: Consider the manufacturability of the ring gear. Evaluate factors such as the feasibility of producing the required tooth profile, the availability of suitable materials, and the manufacturing capabilities of the supplier. It’s important to choose a size that can be efficiently manufactured while meeting the required quality standards.
  6. Consult Design Guidelines and Standards: Refer to industry design guidelines, standards, and specifications specific to the type of gear and application. These guidelines provide recommendations and formulas for calculating gear sizes based on factors such as tooth strength, contact stress, and bending stress. Adhering to recognized standards ensures that the selected ring gear size is appropriate for the intended application.

It is often beneficial to consult with gear design engineers or industry experts to ensure the proper selection of the ring gear size. They can provide detailed analysis, simulation, and expertise in choosing the optimal size based on the specific requirements and constraints of the application.

By carefully considering these factors and following established design practices, you can choose the right size ring gear that will deliver reliable performance, efficient power transmission, and long-term durability for your application.

\ring gear

Can you provide examples of machinery that use ring gears?

Machinery in various industries utilize ring gears for different applications. Here are some examples of machinery that commonly use ring gears:

  • Automotive Transmissions: Ring gears are an integral part of automotive transmissions. They are used in automatic transmissions, manual transmissions, and dual-clutch transmissions. Ring gears help transmit power from the engine to the wheels by engaging with the pinion gear or other associated gears.
  • Industrial Gearboxes: Ring gears are extensively used in industrial gearboxes, which are employed in a wide range of applications. Gearboxes in industries such as manufacturing, mining, construction, and energy generation use ring gears to transmit power and control rotational speed. They provide torque multiplication and speed reduction or increase as required by the specific machinery.
  • Wind Turbines: Ring gears are crucial components in wind turbines. They are used in the main gearbox to convert the rotational motion of the wind turbine blades into electrical power. The ring gear connects the rotor shaft to the generator, enabling the transmission and conversion of the mechanical energy into electrical energy.
  • Rotary Tables: Rotary tables are used in machining operations to provide precise positioning and rotational movement. They are commonly found in milling machines, drilling machines, and machining centers. Ring gears are employed in the rotary tables to enable smooth and accurate rotation, allowing for precise machining and indexing of workpieces.
  • Printing Presses: Printing presses, particularly those used for high-speed commercial printing, often incorporate ring gears. Ring gears help drive the paper feed mechanisms and synchronize the movement of various components, ensuring precise control and alignment during the printing process.
  • Excavators and Earthmoving Equipment: Large construction machinery, such as excavators and earthmoving equipment, rely on ring gears for their hydraulic systems. Ring gears enable the rotation and control of the excavator’s superstructure, including the boom, arm, and bucket. They provide the necessary power and torque for efficient digging, lifting, and material handling.
  • Conveyor Systems: Ring gears are utilized in conveyor systems, which are widely used in industries for material handling and transportation. They are often employed in large-scale conveyors to drive the pulleys and facilitate the movement of heavy loads along the conveyor belts. Ring gears ensure smooth and reliable operation of the conveyor systems.
  • Robotics and Automation: Ring gears find applications in robotics and automation systems. They are used in robotic arms and joints to enable precise and controlled movement. Ring gears provide the necessary torque and rotational capabilities for various robotic applications, including assembly, pick-and-place operations, and material manipulation.

These examples represent just a few of the many machinery and equipment types that utilize ring gears. The versatility and reliability of ring gears make them essential components in various industries, where they play a crucial role in transmitting power, controlling movement, and ensuring efficient operation of machinery.

ring gear

What is a ring gear and how does it work?

A ring gear is a type of gear that features teeth on the outer perimeter of a circular ring-shaped component. It is commonly used in various mechanical systems and applications. Here’s a detailed explanation of what a ring gear is and how it works:

A ring gear, also known as an annular gear or internal gear, is a gear with teeth on the inside circumference of a circular ring. It is designed to mesh with a pinion gear or another gear that has teeth on the outside. The combination of a ring gear and a pinion gear forms a gear set, enabling the transmission of rotational motion and torque between the two gears.

Here’s how a ring gear works:

  1. Tooth Engagement: When a ring gear and a pinion gear are brought together, the teeth of the pinion gear mesh with the teeth of the ring gear. The teeth of the pinion gear enter the spaces between the teeth of the ring gear, creating a mechanical connection between the two gears.
  2. Motion Transmission: As the driving gear (such as the pinion gear) rotates, it transfers rotational motion to the ring gear. The teeth of the driving gear push against the teeth of the ring gear, causing the ring gear to rotate in the opposite direction. This rotational motion can be used to drive other components or systems connected to the ring gear.
  3. Torque Transfer: The meshing of the teeth between the ring gear and the driving gear allows for the transfer of torque. Torque is the rotational force or twisting force applied to a gear. As the driving gear exerts torque on the ring gear through the meshing teeth, the ring gear experiences a torque load. This torque load can be transmitted to other components or systems connected to the ring gear.
  4. Gear Ratio: The gear ratio between the ring gear and the driving gear determines the speed and torque relationship between the two gears. The gear ratio is defined as the ratio of the number of teeth on the ring gear to the number of teeth on the driving gear. By changing the size or number of teeth on either the ring gear or the driving gear, the gear ratio can be adjusted to achieve the desired speed or torque output.
  5. Load Distribution: The ring gear distributes the load over a larger area compared to other types of gears. This load distribution characteristic allows the ring gear to handle higher loads and torque. The design of the ring gear and its tooth profile ensures that the load is evenly distributed across the surface of the gear, enhancing its durability and reducing the risk of premature wear or failure.

Ring gears are commonly used in various applications, including automotive transmissions, differential systems, planetary gear systems, industrial machinery, and power transmission equipment. They provide advantages such as compactness, high torque capacity, load distribution, and the ability to achieve high gear ratios.

It’s important to note that the design and characteristics of ring gears may vary depending on the specific application and requirements. Factors such as tooth profile, material selection, lubrication, and manufacturing techniques are carefully considered to ensure optimal performance and durability of the ring gear.

China Standard 45 Module Large /Heavy Cast Girth Ring Gear for Rotrar Kiln gear patrolChina Standard 45 Module Large /Heavy Cast Girth Ring Gear for Rotrar Kiln gear patrol
editor by CX 2023-10-07

Tags:

ring gear

As one of leading ring gear manufacturers, suppliers and exporters of products, We offer ring gear and many other products.

Please contact us for details.

Mail:[email protected]

Manufacturer supplier exporter of ring gear.

Recent Posts